The authors acknowledge support from the German Federal Ministry of
Education and Research within the National Network Computational
Neuroscience - Bernstein Fokus: "Learning behavioral models: From human
experiment to technical assistance", grant FKZ 01GQ0951.
Creutzig, F., and Sprekeler, H. (2008). Predictive Coding and the Slowness Principle: An Information-Theoretic Approach. Neural Computation , 20(4), 1026-1041.
Franzius, M., Sprekeler, H., and Wiskott, L. (2007). Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells. PLoS Computational Biology , 3(8), e166.
Berkes, P., and Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision , 5(6), 579-602.
Berkes, P., and Wiskott, L. (2002). Applying Slow Feature Analysis to Image Sequences Yields a Rich Repertoire of Complex Cell Properties. Proc. Intl. Conf. on Artificial Neural Networks (ICANN'02) , Lecture Notes in Computer Science , 81-86. Ed. Dorronsoro, J. R. Publ. Springer.
Wiskott, L., Berkes, P., Franzius, M., Sprekeler, H., and Wilbert, N. (2011). Slow feature analysis. Scholarpedia , 6(4), 5282.
Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. (2009). Modular toolkit for Data Processing (MDP): a Python data processing frame work, Front. Neuroinform. (2008) 2:8. doi:10.3389/neuro.11.008.2008.
Lütkepohl, H (2005). New Introduction to Multiple Time Series Analysis. Springer 2005.
Haardt, M., Hüper, K., Moore, J., and Nossek J. (1996). Simultaneous Schur Decomposition of several matrices to achieve automatic pairing in multidimensional harmonic retrieval problems. in Signal Processing VIII: Theories and Applications, Proceedings of EUSIPCO-96,
Trieste, Italy, 1996, Vol. 1, pp. 531–534.
Cardoso, J. F., and Souloumiac, A. (1996). Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl., vol. 17, pp. 161–164, Jan. 1996.
Golub, G. H., and van Loan, C. F. (1989). Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 2nd edition, 1989.